Q:如何应对变慢的Redis(总结)
个人总结版本
- AOF 重写问题,比如设置了 everysec ,上一次还妹写完,下一次又来了
- 发生了 swap 内存交换
- 查看基线性能
- 查看延迟的绝对值
- 是否有慢查询
- 是否会出现同一时刻大批量 kv 的过期
- 是否存在 bigkey
- 是否存在透明大页
- 是否出现频繁切换 socket,需要绑核
- 主从集群下是否主库过大,导致 RDB 载入阻塞
老师总结版本
- 获取 Redis 实例在当前环境下的基线性能。
- 是否用了慢查询命令?如果是的话,就使用其他命令替代慢查询命令,或者把聚合计算命令放在客户端做。
- 是否对过期 key 设置了相同的过期时间?对于批量删除的 key,可以在每个 key 的过期时间上加一个随机数,避免同时删除。
- 是否存在 bigkey? 对于 bigkey 的删除操作,如果你的 Redis 是 4.0 及以上的版本,可以直接利用异步线程机制减少主线程阻塞;如果是 Redis 4.0 以前的版本,可以使用 SCAN 命令迭代删除;对于 bigkey 的集合查询和聚合操作,可以使用 SCAN 命令在客户端完成。
- Redis AOF 配置级别是什么?业务层面是否的确需要这一可靠性级别?如果我们需要高性能,同时也允许数据丢失,可以将配置项 no-appendfsync-on-rewrite 设置为 yes,避免 AOF 重写和 fsync 竞争磁盘 IO 资源,导致 Redis 延迟增加。当然, 如果既需要高性能又需要高可靠性,最好使用高速固态盘作为 AOF 日志的写入盘。
- Redis 实例的内存使用是否过大?发生 swap 了吗?如果是的话,就增加机器内存,或者是使用 Redis 集群,分摊单机 Redis 的键值对数量和内存压力。同时,要避免出现 Redis 和其他内存需求大的应用共享机器的情况。
- 在 Redis 实例的运行环境中,是否启用了透明大页机制?如果是的话,直接关闭内存大页机制就行了。
- 是否运行了 Redis 主从集群?如果是的话,把主库实例的数据量大小控制在 2~4GB,以免主从复制时,从库因加载大的 RDB 文件而阻塞。
- 是否使用了多核 CPU 或 NUMA 架构的机器运行 Redis 实例?使用多核 CPU 时,可以给 Redis 实例绑定物理核;使用 NUMA 架构时,注意把 Redis 实例和网络中断处理程序运行在同一个 CPU Socket 上。
Q:如何应对变慢的Redis(SUB:Redis 自身)
- 如何判断 Redis 是不是真的变慢了。一个最直接的方法,就是查看 Redis 的响应延迟。
- 看基线性能。基于当前环境下的 Redis 基线性能做判断。所谓的基线性能呢,也就是一个系统在低压力、无干扰下的基本性能,这个性能只由当前的软硬件配置决定。
如何应对 Redis 变慢?
Redis 自身操作特性的影响
慢查询命令
例子:Value 类型为 String 时,GET/SET 操作主要就是操作 Redis 的哈希表索引。这个操作复杂度基本是固定的,即 $O(1)$。但是,当 Value 类型为 Set 时,SORT、SUNION/SMEMBERS 操作复杂度分别为 $O(N+M*log(M))$ 和 $O(N)$。其中,$N$ 为 Set 中的元素个数,$M$ 为 SORT 操作返回的元素个数。这个复杂度就增加了很多。
解决手段
用其他高效命令代替。比如说,如果你需要返回一个 SET 中的所有成员时,不要使用 SMEMBERS 命令,而是要使用 SSCAN 多次迭代返回,避免一次返回大量数据,造成线程阻塞。
当你需要执行排序、交集、并集操作时,可以在客户端完成,而不要用 SORT、SUNION、SINTER 这些命令,以免拖慢 Redis 实例。
keys 命令
1
2
3KEYS *name*
1) "lastname"
2) "firstname"因为 KEYS 命令需要遍历存储的键值对,所以操作延时高。如果你不了解它的实现而使用了它,就会导致 Redis 性能变慢。所以,KEYS 命令一般不被建议用于生产环境中。
过期 key 操作(删除操作是阻塞的,Redis 4.0 后可以用异步线程机制来减少阻塞影响)
- 默认情况下,Redis 每 100 毫秒会删除一些过期 key。具体算法:
- 采样 ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 个数的 key,并将其中过期的 key 全部删除;
- 如果超过 25% 的 key 过期了,则重复删除的过程,直到过期 key 的比例降至 25% 以下。
- 频繁使用带有相同时间参数的 EXPIREAT 命令设置过期 key
- 解决手段:如果一批 key 的确是同时过期,你还可以在 EXPIREAT 和 EXPIRE 的过期时间参数上,加上一个一定大小范围内的随机数,这样,既保证了 key 在一个邻近时间范围内被删除,又避免了同时过期造成的压力。
说白了就是不要出现同一时刻大量 key 过期导致的雪崩。
- 默认情况下,Redis 每 100 毫秒会删除一些过期 key。具体算法:
Q:如何应对变慢的Redis(SUB:文件系统:AOF)
always 策略并不使用后台子线程来执行。
当主线程使用后台子线程执行了一次 fsync,需要再次把新接收的操作记录写回磁盘时,如果主线程发现上一次的 fsync 还没有执行完,那么它就会阻塞。所以,如果后台子线程执行的 fsync 频繁阻塞的话(比如 AOF 重写占用了大量的磁盘 IO 带宽),主线程也会阻塞,导致 Redis 性能变慢。
Q:如何应对变慢的Redis(SUB:操作系统 swap)
内存 swap 是操作系统里将内存数据在内存和磁盘间来回换入和换出的机制。
通常,触发 swap 的原因主要是物理机器内存不足,对于 Redis 而言,有两种常见的情况:
- Redis 实例自身使用了大量的内存,导致物理机器的可用内存不足;
- Redis 实例在同一台机器上运行的其他进程,在进行大量的文件读写操作。文件读写本身会占用系统内存,这会导致分配给 Redis 实例的内存量变少,进而触发 Redis 发生 swap。
针对这个问题,我也给你提供一个解决思路:增加机器的内存或者使用 Redis 集群。
Q:如何应对变慢的Redis(SUB:操作系统内存大页)
除了内存 swap,还有一个和内存相关的因素,即内存大页机制(Transparent Huge Page, THP),也会影响 Redis 性能。
Linux 内核从 2.6.38 开始支持内存大页机制,该机制支持 2MB 大小的内存页分配,而常规的内存页分配是按 4KB 的粒度来执行的。
如果采用了内存大页,那么,即使客户端请求只修改 100B 的数据,Redis 也需要拷贝 2MB 的大页。相反,如果是常规内存页机制,只用拷贝 4KB。两者相比,你可以看到,当客户端请求修改或新写入数据较多时,内存大页机制将导致大量的拷贝,这就会影响 Redis 正常的访存操作,最终导致性能变慢。
出现问题之后该机制可以关闭。
Q:缓存满了怎么办
Redis 有一个重要机制,即缓存数据的淘汰机制。
可以设置一个最大容量
1 | CONFIG SET maxmemory 4gb |
Redis 缓存有哪些淘汰策略?
- 在设置了过期时间的数据中进行淘汰,包括 volatile-random、volatile-ttl、volatile-lru、volatile-lfu(Redis 4.0 后新增)四种。
- 在所有数据范围内进行淘汰,包括 allkeys-lru、allkeys-random、allkeys-lfu(Redis 4.0 后新增)三种。
3.0 之后的默认情况下,Redis 在使用的内存空间超过 maxmemory 值时,并不会淘汰数据,也就是设定的 noeviction 策略。对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis 不再提供服务,而是直接返回错误。
volatile* 这种淘汰策略。它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。
- volatile-ttl 在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
- volatile-random 就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
- volatile-lru 会使用 LRU 算法筛选设置了过期时间的键值对。
- volatile-lfu 会使用 LFU 算法选择设置了过期时间的键值对。
allkeys* 这种淘汰策略的备选淘汰数据范围,就扩大到了所有键值对,无论这些键值对是否设置了过期时间。
- allkeys-random 策略,从所有键值对中随机选择并删除数据;
- allkeys-lru 策略,使用 LRU 算法在所有数据中进行筛选。
- allkeys-lfu 策略,使用 LFU 算法在所有数据中进行筛选。
在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去。